A Two-Stage Algorithm for Domain Adaptation with Application to Sentiment Transfer Problems
نویسندگان
چکیده
Classification systems are typically domain-specific, and the performance decreases sharply when transferred from one domain to another domain. Building these systems involves annotating a large amount of data for every domain, which needs much human labor. So, a reasonable way is to utilize labeled data in one existing (or called source) domain for classification in target domain. To address this problem, we propose a two-stage algorithm for domain adaptation. At the first transition stage, we share the information between the source domain and the target domain to get some most confidently labeled documents in the target domain, and at the second transmission stage, we exploit them to label the target-domain data via following the intrinsic structure revealed by the target domain. The experimental results on sentiment data indicate that the proposed approach could improve the performance of domain adaptation dramatically.
منابع مشابه
Sample-oriented Domain Adaptation for Image Classification
Image processing is a method to perform some operations on an image, in order to get an enhanced image or to extract some useful information from it. The conventional image processing algorithms cannot perform well in scenarios where the training images (source domain) that are used to learn the model have a different distribution with test images (target domain). Also, many real world applicat...
متن کاملDeep Unsupervised Domain Adaptation for Image Classification via Low Rank Representation Learning
Domain adaptation is a powerful technique given a wide amount of labeled data from similar attributes in different domains. In real-world applications, there is a huge number of data but almost more of them are unlabeled. It is effective in image classification where it is expensive and time-consuming to obtain adequate label data. We propose a novel method named DALRRL, which consists of deep ...
متن کاملSentiment Domain Adaptation with Multiple Sources
Domain adaptation is an important research topic in sentiment analysis area. Existing domain adaptation methods usually transfer sentiment knowledge from only one source domain to target domain. In this paper, we propose a new domain adaptation approach which can exploit sentiment knowledge from multiple source domains. We first extract both global and domain-specific sentiment knowledge from t...
متن کاملBiographies, Bollywood, Boom-boxes and Blenders: Domain Adaptation for Sentiment Classification
Automatic sentiment classification has been extensively studied and applied in recent years. However, sentiment is expressed differently in different domains, and annotating corpora for every possible domain of interest is impractical. We investigate domain adaptation for sentiment classifiers, focusing on online reviews for different types of products. First, we extend to sentiment classificat...
متن کاملImage alignment via kernelized feature learning
Machine learning is an application of artificial intelligence that is able to automatically learn and improve from experience without being explicitly programmed. The primary assumption for most of the machine learning algorithms is that the training set (source domain) and the test set (target domain) follow from the same probability distribution. However, in most of the real-world application...
متن کامل